Title

Neuropilin-1 prevents endothelial activation and interacts with TGFBR2 and VEcadherin to promote adherens junction stability.

Authors

Emy Bosseboeuf¹[†], Anissa Chikh²[†], Dhilakshani Vignaraja³, Ridhi Rajendrakumar¹, Rayomand S. Khambata¹, Justin C. Mason⁴, Anna M. Randi⁴, Amrita Ahluwalia¹, and Claudio Raimondi ^{1, *}

Affiliations

¹ William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK

² Molecular and Clinical Sciences Research Institute, St. George's, University of London, London SW17 0RE, UK

³ Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK.

⁴ Vascular Sciences, National Heart & Lung Institute, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London, W12 0HS, UK

* Correspondence: claudio.raimondi@qmul.ac.uk; Tel: +44 (0)20-7882-5720

† These authors contributed equally

Abstract

Endothelial homeostasis maintains the semi-permeable, anti-inflammatory properties of the endothelium. Here, we investigate the homeostatic role of NRP1 in endothelial cells (ECs) exposed to flow, in endothelium-specific NRP1 knockout mice and in a mouse model of atherosclerosis. We demonstrate that NRP1 is a constituent of adherens junctions, interacting with VE-cadherin and promoting its association with p120 catenin, stabilizing adherens junctions and promoting cytoskeleton remodeling. We show that NRP1 interacts with Transforming Growth Factor β (TGF β) receptor II (TGFBR2) and inhibits the plasma membrane localization of TGFBR2 in puncta and TGF β signaling. NRP1 downregulation increases the expression of pro-inflammatory cytokines and adhesion molecules resulting in increased leukocyte rolling and atherosclerotic plaque size. These findings elucidate a novel homeostatic role of endothelial NRP1 and reveal a mechanism by which NRP1 reduction in ECs contributes to vascular disease by destabilizing adherens junction and promoting TGF β signaling and inflammation.