Monocytes from patients with Peripheral Artery Disease inhibit endothelial cell migration by producing anti-angiogenic VEGF₁₆₅b

¹Jyoti Agrawal, ¹Jason O Amartey, ^{1,2}Yizhuo Gao, ³Bruce Braithwaite and ¹David O Bates School of Medicine, University of Nottingham

¹Tumour and Vascular Biology Laboratories, Division of Cancer and Stem Cells, BioDiscovery Institute and Dept of Ophthalmology, ²Division of Clinical Neurosciences; School of Medicine, University of Nottingham; and ³Dept of Vascular Surgery, Queen's Medical Centre, Nottingham

Peripheral artery disease (PAD) is a significant contributor to morbidity and mortality in patients with cardiovascular disease as a consequence of a combination of atherosclerosis and reduced vessel collateralisation. One of the key factors regulating blood vessel growth (angiogenesis) is Vascular Endothelial Growth Factor (VEGF), responsible for mediating endothelial cell migration, and proliferation. Paradoxically, higher expression levels of VEGF in cardiovascular patients are associated with impaired angiogenic capability, probably due to the expression of different mRNA splice isoforms of VEGF. Monocytes are actively involved in angiogenesis so we tested the hypothesis that in PAD patients monocytes secrete elevated level of anti-angiogenic isoform VEGF-A₁₆₅b and reduced the effect of pro-angiogenic VEGF-A₁₆₅a on endothelial migration. To test this, we used a fully humanised anti-VEGF-A₁₆₅b antibody in an endothelial cell migration assay.

Blood was collected from four PAD patients (defined as Ankle:Brachial Pressure index <0.9) and monocytes were isolated with CD14 microbeads. CD14⁺ labelled monocytes were seeded in a 24-well plate and primary endothelial cells (Human umbilical vein endothelial cells; HUVEC) were grown on 8µm inserts on the top of monocytes and endothelial cells stimulated to migrate across the pore by incubating the with pro-angiogenic VEGF-A₁₆₅a at 40ng/ml. 24hr later we counted the number of cells migrated across a porous membrane in triplicate by staining them with DAPI (nuclear staining dye), treated and untreated with the anti-VEGF₁₆₅b antibody (N=3 per patient). VEGF-A₁₆₅a induced migration of endothelial cells (208±13% of control, P<0.001), which was blocked by co-incubation with monocytes from PAD patients (151±9% of control, p<0.01). The inhibition of migration induced by monocytes from patients with PAD was reversed by anti-VEGF₁₆₅b antibody (225±22% of control, P<0.001 compared with monocytes and VEGF-A₁₆₅a but not significantly different from VEGF-A₁₆₅a alone). Our findings support the concept that VEGF₁₆₅b could be a new target to treat ischemia in

PAD patients and is associated with impaired vascularisation. We identify that humanised anti-VEGF₁₆₅b antibody could prove to be a potential therapeutic and could promote the angiogenic response by contribute to tissue revascularization in ischemic muscle of patients with PAD.