Activation of the PAR1-TRPV4 Signaling Axis Drives Endothelial Barrier Failure in COVID-19

Laura Michalick^{1,2}, Bertina Mandzimba-Maloko¹, Shima Hamedi¹, Melanie Dohmen^{1,3}, Markus C. Brack¹, Sabrina Schulz¹, Felix Behrens^{1,2,4}, Szandor Simmons^{1,2}, Holger Müller-Redetzky¹, Norbert Suttorp^{1,5}, Florian Kurth¹, Victor Max Corman^{1,6}, Andreas C. Hocke^{1,5}, Martin Witzenrath^{1,5}, Stefan Hippenstiel^{1,5}, Wolfgang M. Kuebler^{1,2,5,7,8}

¹Charité - Universitätsmedizin Berlin, ²DZHK (German Centre for Cardiovascular Research), partner site Berlin, ³Max Delbrück Center for Molecular Medicine, ⁴Berlin Institute of Health (BIH), ⁵DZL (German Center for Lung Research), partner site Berlin, ⁶German Center for Infection Research (DZIF), ⁷The Keenan Research Centre for Biomedical Science, St. Michael's Hospital, ⁸Departments of Physiology and Surgery, University of Toronto

Study objective: Endothelial dysfunction and increased microvascular permeability are central hallmarks of severe COVID-19. At present, the exact underlying mechanisms of endothelial barrier failure in COVID-19 remain elusive. Here, we show that dysbalance of coagulation factors, characterized by a loss of antithrombin III and increased thrombin activity in plasma from severe COVID-19 patients activates endothelial protease-activated receptor (PAR1), which mediates barrier failure by triggering TRPV4-mediated Ca^{2+} influx in lung microvascular endothelial cells.

Methods: Citrate plasma was sampled as part of the Pa-COVID-19 cohort study (ethics approval EA2/066/20) from patients with severe COVID-19 (high flow O_2 or mechanically ventilated; WHO severity score: 5-7). Plasma samples were diluted to 10% (v/v) in cell culture medium without FCS and tested for their ability to disrupt barrier integrity of primary human pulmonary microvascular endothelial cell (HPMEC) monolayers by electrical cell-substrate impedance sensing (ECIS), immunofluorescence for endothelial VE-cadherin and F-actin, western blot analyses of PAR-1 cleavage, and real-time Ca²⁺ imaging. Plasma from healthy donors served as control.

Results: COVID-19 plasma had elevated thrombin activity while levels of antithrombin III, a key anticoagulant with thromboprotective function were decreased. COVID-19 plasma caused endothelial barrier dysfunction as measured by ECIS and gap formation in HPMEC monolayers. Endothelial barrier disruption and endothelial Ca^{2+} influx in response to COVID-19 plasma could be blocked by selective antagonists targeting thrombin (Argatroban), its receptor PAR1 (SCH79797), or TRPV4 (HC-067047).

Conclusion: Here, we identify a novel signaling axis via thrombin, its receptor PAR1, and TRPV4 as mechanism for increased microvascular permeability in COVID-19. Targeting this signaling axis in endothelial barrier failure may provide a promising adjunctive therapy in patients with or at risk for severe COVID-19.

Support or Funding Information

This study is supported by BMBF (PROVID), BIH (Translational Vascular Biomedicine), DFG (SFB-TR84), and the German Centre for Cardiovascular Research (DZHK).